Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The characteristic distance at which quantum gravitational effects are significant, the Planck length, can be determined from a suitable combination of the fundamental physical constants $G, h$ and $c$. Which of the following correctly gives the Planck length ?

JEE MainJEE Main 2018Physical World, Units and Measurements

Solution:

Given Planck length $l$ can be determined from suitable combination of $G, \hbar$ and $c$. Therefore,
$l=f(G, h, c)=\left[ M ^{-1} \,L ^{3}\, T ^{-2}\right]^{ x }\left[ M\,L ^{2}\, T ^{-1}\right]^{y}\left[ LT ^{-1}\right]^{2}= M ^{-2}\, M ^{y}\, L ^{3 x} \,L ^{2 y}\, L ^{z}\, T ^{-2 x} \,T ^{-y}\, T ^{z}$
$\Rightarrow M ^{\circ} L ^{1} T ^{0}= M ^{x+y}\, L ^{3 x+2 y+z} \,T ^{-2 x-y-z}$
Equating the exponents, we have
$-x+y =0 \Rightarrow x=y$
$-2 x-y-z =0 $
$\Rightarrow -2 x-x-z=0 $
$\Rightarrow z=-3 x $
$3 x+2 y+z =1$
$ \Rightarrow 3 x+2 x-3 x=1 $
$\Rightarrow x=\frac{1}{2} $
$ \Rightarrow x =\frac{1}{2}, y=\frac{1}{2}, z=\frac{-3}{2} $
Therefore, $ l =G^{1 / 2}\,h^{1 / 2}\, c^{-3 / 2}=\sqrt{\frac{G \hbar}{c^{3}}} $