The sum of all the four digit numbers using the digits 3, 5, 7 and 9
$=(3+5+7+9)\times (4-1)!\left( \frac{{{10}^{4}}-1}{10-1} \right) $
$=24\times 6\times \left( \frac{{{10}^{4}}-1}{10-1} \right)=\frac{24\times 6\times 9999}{9} $
$ \therefore $ Required average
$=\frac{24\times 6\times 9999}{9\times 24}=6666 $