Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The average depth of Indian ocean is about $5000 m$. What will be the percentage fractional compression of water at the bottom of the ocean, given that the bulk modulus of water is $3 \times 10^{9} Pa \cdot g =9.8 m / s ^{2}$
$\left(1 Pa =1 N / m ^{2}\right)$

Mechanical Properties of Solids

Solution:

$P=h \rho g=5000 \times 10^{3} \times 9.8$
$\therefore B=\frac{P}{\Delta V} \times V$
$\Rightarrow \frac{\Delta V}{V}$
$=\frac{P}{B}=\frac{5000 \times 10^{3} \times 9.8}{3 \times 10^{9}}$
$\therefore \frac{\Delta V}{V}=16333.3 \times 10^{-6}=1.6 \times 10^{-2}$
$\frac{\Delta V}{V} \times 100=1.6 \%$