Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The argument of the complex number $ \left( \frac{i}{2}-\frac{2}{i} \right) $ is equal to

KEAMKEAM 2011Complex Numbers and Quadratic Equations

Solution:

Let $ z=\frac{i}{2}-\frac{2}{i}=\frac{i}{2}-\frac{2i}{{{i}^{2}}} $ $ Z=\frac{i}{2}+2i=\frac{5}{2}i=0+\frac{5}{2}i $ $ \arg (z)={{\tan }^{-1}}\left( \frac{\operatorname{Im}(z)}{\operatorname{Re}(z)} \right) $
$={{\tan }^{-1}}\left( \frac{5/2}{0} \right)={{\tan }^{-1}}(\infty ) $
$={{\tan }^{-1}}\left( \tan \frac{\pi }{2} \right)=\frac{\pi }{2} $