Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The areas of $\triangle ABC$ and $\triangle PQR$ are $144 cm ^2$ and $324 cm ^2$, respectively. If $AD$ and $PS$ are the corresponding altitudes of the triangles $ABC$ and $PQR$, respectively, then the ratio of the lengths of $AD$ and PS is

Geometry

Solution:

Given, area of $\triangle ABC =144 cm ^2$
Area of $\triangle PQR =324 cm ^2$
We know that
$\frac{\text { Area of } \triangle ABC }{\text { Area of } \triangle PQR }=\frac{ AD ^2}{ PS ^2} $
$\frac{144}{324}=\frac{ AD ^2}{ PS ^2} \Rightarrow \frac{ AD }{ PS }=\frac{\sqrt{144}}{\sqrt{324}} \Rightarrow \frac{ AD }{ PS }=\frac{12}{18} $
$\Rightarrow \frac{ AD }{ PS }=\frac{2}{3} \therefore \text { Required ratio }=2: 3$