Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The area of the triangle whose vertices are the points represented by the complex number $z, i z$ and $z+i z$ is

Complex Numbers and Quadratic Equations

Solution:

Area of the triangle is given by
$\Delta=\frac{1}{4}\begin{vmatrix}z & \bar{z} & 1 \\ i z & -i \bar{z} & 1 \\ z+i z & \bar{z}-i \bar{z} & 1\end{vmatrix}$
Applying $R_3 \rightarrow R_3-R_1-R_2$, we get
$\Delta=\frac{1}{4}\begin{vmatrix}z & \bar{z} & 1 \\ i z & -i \bar{z} & 1 \\ 0 & 0 & -1\end{vmatrix}=\frac{1}{4}|(-1)\begin{vmatrix}z & \bar{z} \\ i z & -i \bar{z}\end{vmatrix} \mid$
$=\frac{1}{4}|(-1)(i) z \bar{z}| \begin{vmatrix}1 & 1 \\ 1 & -1\end{vmatrix}|=\frac{1}{4}z|^2(2)=\frac{1}{2}|z|^2$