We have,
$x^2 = 4y$
$y = 1$
$y = 4$
and the $Y$ -axis lying in the first quadrant.
$\therefore $ Required area $=\int\limits_{1}^{4} \sqrt{4 y} d y $
$=2\left[\frac{2}{3} y^{\frac{3}{2}}\right]_{1}^{4}=\frac{4}{3}\left[4^{\frac{3}{2}}-1\right] $
$=\frac{4}{3}(8-1)=\frac{4}{3} \times 7=\frac{28}{3}$