Thank you for reporting, we will resolve it shortly
Q.
The area included between the parabolas $y^{2}=4a \left(x+a\right)$ and $y^{2}=4b\left(x-a\right)$, $b\,>\,a>\,0$, is
Application of Integrals
Solution:
We have, $y^{2} = 4a\left(x + a\right)$ $\,...\left(i\right)$, a parabola with vertex $\left(-a, 0\right)$
and $y^{2} = 4b\left(x - a\right)$ $\,...\left(ii\right)$, a parabola with vertex $\left(a, 0\right)$
Solving $\left(i\right)$ and $\left(ii\right)$, we get $y =\pm \,a \sqrt{\frac{8b}{b-a}}$
$A=2\int_{0}^{\frac{a\sqrt{8b}}{\sqrt{b-a}}} \left(\left(\frac{y^{2}}{4b}+a\right)-\left(\frac{y^{2}}{4a}-a\right)\right)dy$