Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The area (in sq. units) of the triangle formed by the two tangents drawn from the external point $O(0,0)$ to the circle $x^{2}+y^{2}-2 g x-2 h y+h^{2}=0$ and their chord of contact is

TS EAMCET 2020

Solution:

image
We have, equation of circle is
$x^{2}+y^{2}-2 g x-2 h y+h^{2}=0$
$\therefore $ Radius of circle,
$A C=\sqrt{g^{2}+h^{2}-h^{2}}=g$
and Length of tangent,
$O A=\sqrt{0+0-0-0+h^{2}}=h$
Now, in $\triangle O A C$
$\tan \theta=\frac{A C}{O A}=\frac{g}{h}$
$\therefore \sin \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\frac{2 \times \frac{g}{h}}{1+\frac{g^{2}}{h^{2}}}=\frac{2 g h}{h^{2}+g^{2}}$
$\therefore $ Area of $\Delta O A B=\frac{1}{2} O A \times O B \times \sin 2 \theta$
$=\frac{1}{2} \times h \times h \times \frac{2 g h}{h^{2}+g^{2}}=\frac{g h^{3}}{h^{2}+g^{2}}$