Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The area (in sq. units) of the triangle formed by the tangent and the normal at the point $\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$ to the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the $X$ -axis is

AP EAMCETAP EAMCET 2018

Solution:

Given curve,
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Differentiate w.r.t $x$, we get
$\Rightarrow \frac{2 x}{a^{2}}+\frac{2 y \cdot y^{'}}{b^{2}}=0$
$ \Rightarrow y^{'}=\frac{-b^{2} x}{y a^{2}}$
At $\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right), y^{'}=\frac{-b^{2}\left(\frac{a}{\sqrt{2}}\right)}{\frac{b}{\sqrt{2}}\left(a^{2}\right)}=-\frac{b}{a}$
So, slope of tangent, $m_{1}=-\frac{b}{a}$
and slope of normal, $m_{2}=\frac{a}{b}$
Equation of tangent at $\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$ is
$\left(y-\frac{b}{\sqrt{2}}\right)=\frac{-b}{a}\left(x-\frac{a}{\sqrt{2}}\right)$
And equation of normal at $\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$ is
$\left(y-\frac{b}{\sqrt{2}}\right)=\frac{a}{b}\left(x-\frac{a}{\sqrt{2}}\right)$
Now,
image
Area of $\Delta=\frac{1}{2} \times$ base $\times$ height
$=\frac{1}{2}\left(\frac{a^{2}+b^{2}}{\sqrt{2} a}\right) \times \frac{b}{\sqrt{2}}=\frac{b}{4 a}\left(a^{2}+b^{2}\right)$