Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The area (in sq. units) of the smaller of the two circles that touch the parabola, $y^2 = 4x$ at the point $(1, 2)$ and the x-axis is :

JEE MainJEE Main 2019Conic Sections

Solution:

Equation of circle is
$\left(x-1\right)^{2} +\left(y-2\right)^{2} +\lambda\left(x-y+1\right)=0$
$ \Rightarrow x^{2} +y^{2} +x\left(\lambda-2\right)+y\left(-4-\lambda\right) +\left(5+\lambda\right) = 0$
As cirlce touches x axis then $ g^{2} -c=0 $
$ \frac{\left(\lambda-2\right)^{2}}{4} = \left(5+\lambda\right)$
$ \lambda^{2} + 4-4\lambda=20 +4\lambda $
$ \lambda^{2} -8\lambda-16 =0 $
$ \lambda = \frac{8\pm \sqrt{128}}{2} $
$ \lambda = 4 \pm4\sqrt{2} $
Radius $ = \left|\frac{\left(-4-\lambda\right)}{2}\right|$
Put $\lambda $ and get least radius.

Solution Image