Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The area (in sq units) of the quadrilateral formed by the tangents at the end points of the latusrectum recta to the ellipse $\frac{x^2}{9} +\frac{y^2}{ 5}=1 is $

JEE AdvancedJEE Advanced 2015Conic Sections

Solution:

Given equation of ellipse is
$ \frac{x^2}{9} +\frac{y^2}{5} =1$
$\therefore a^2 = 9 , b^2 = 5 $ $\Rightarrow a=3, b=\sqrt 5 $
Now ,$ e= \sqrt{ 1+ \frac{b^2}{a^2}} = \sqrt{1- \frac{5}{9}} = \frac{2}{3}$
Foci $= (\pm ae , 0) = (\pm 2 , 0)$ and $\frac{b^2}{a} = \frac{5}{3} $
image
$ \therefore $ Extremities of one of latusrectum are
$\bigg( 2, \frac{5}{3} \bigg) $ and $\bigg(2, \frac{-5}{3} \bigg)$
$\therefore $ Equation of tangent at $ \bigg(2 , \frac{5}{3} \bigg)$ is
$ \frac{x(2)}{9} + \frac{y(5/3)}{5} = 1 $ or $2x+3y =9 $
Since, Eq. (ii) intersects $X$ and $Y$-axes at $ \bigg(\frac{9}{2} , 0 \bigg)$ and $(0,3)$, respectively.
$ \therefore $ Area of quadrilateral $= 4 \times$ Area of $APOQ $
$= 4 \times \bigg( \frac{1}{2} \times \frac{9}{2} \times 3 \bigg ) = 27 $ sq units