Thank you for reporting, we will resolve it shortly
Q.
The area enclosed between the curves $ y=x^{3}$ and $ y=\sqrt{x} $ is
ManipalManipal 2008
Solution:
Solving the given curves $y=\sqrt{x}$ or $y^{2}=x$ and $y=x^{3}$
we get, the points of intersection $(0,0)$ and $(1,1)$.
$\therefore $ Required area $=\int\limits_{0}^{1}\left(\sqrt{x}-x^{3}\right) d x$
$=\left[\frac{x^{3 / 2}}{3 / 2}-\frac{x^{4}}{4}\right]_{0}^{1}$
$=\frac{5}{12}$ sq unit