Thank you for reporting, we will resolve it shortly
Q.
The area common to the circle $x^{2}+y^{2}=16a^{2}$ and the parabola $y^{2}=6ax$ is
Application of Integrals
Solution:
We have, $x^{2}+ y^{2}= 16a^{2}$ $...\left(i\right)$, a circle with centre $\left(0,0\right)$ and radius $4a$.
and $y^{2} = 6ax$ $...\left(ii\right)$, parabola with vertex $\left(0,0\right)$.
The point of intersection of $\left(i\right)$ and $\left(ii\right)$ are
$x = 2a$,
$y=\pm\,2 \sqrt{3}a$.
$\therefore \quad$ Required area = area of shaded region
$=2\left[\int\limits_{0}^{2a}\sqrt{6a}\sqrt{x}\, dx\right]+2 \left[\int\limits_{2a}^{4a}\sqrt{\left(4a^{2}\right)-x^{2}} \,dx\right]$