Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The area bounded by $y=2-|2-x|$ and $y=\frac{3}{|x|}$ is:

Integrals

Solution:

$A=\int\limits_{\sqrt{3}}^2\left(x-\frac{3}{x}\right) d x+\int\limits_2^3\left(4-x-\frac{3}{x}\right) d x$
$=\left(\frac{x^2}{2}-3 \ell \ln x\right)_{\sqrt{3}}^2+\left(4 x-\frac{x^2}{2}-3 \ell n x\right)_2^3$
image
$=\frac{4-3 \ln 3}{2}$