Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The area bounded by the curves $y=cos x$ and $y=sin 2x,\forall x\in \left[\frac{\pi }{6} , \frac{\pi }{2}\right]$ is equal to

NTA AbhyasNTA Abhyas 2022

Solution:

Solution
$A=\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(\sin 2 x-\cos x) d x=\left[-\frac{\cos 2 x}{2}-\sin x\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}$
$=\left[\frac{\cos 2 x}{2}+\sin x\right]_{\frac{\pi}{2}}^{\frac{\pi}{6}}$
$=\frac{1}{2} \times \frac{1}{2}+\frac{1}{2}+\frac{1}{2}-1=\frac{1}{4}$ sq. units