Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The area bounded by the curve $y=|x+3|$ between $x=0$ and $x=-6$ is

Application of Integrals

Solution:

$y=|x+3|=\begin{cases}-(x+3) \text { for } x<-3 \\ x+3 \text { for } x \geq-3\end{cases}$
When $x < -3$, then $y=-x-3$
x - 4 - 5 -6
y 1 2 3

When $x \ge - 3$
x - 1 - 2 -3
y 2 1 0

Draw these points on the graph paper and get the required figure
image
$\therefore$ Required area $=$ Area of region $A B C+$ Area of region $O A D$
$=\int\limits_{-6}^{-3}|x+3| d x+\int\limits_{-3}^0|x+3| d x$
$ =\int\limits_{-6}^{-3}(-x-3) d x+\int\limits_{-3}^0(x+3) d x $
$ =\left[\frac{-x^2}{2}-3 x\right]_{-6}^{-3}+\left[\frac{x^2}{2}+3 x\right]_{-3}^0 $
$=\left[\left(\frac{-(-3)^2}{2}-3 \times(-3)\right)-\left(\frac{-(-6)^2}{2}-3 \times(-6)\right)\right] $
$ =\left[\left(\frac{-9}{2}+9\right)-(-18+18)\right]+\left[\frac{9}{2}\right]$
$ =\frac{9}{2}+\frac{9}{2}=9 $ sq units