Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The area bounded by the curve $y=x^{2}\left(x - 1\right)^{2}$ with the $x$ -axis is $k$ sq. units, then the value of $60k$ is equal to

NTA AbhyasNTA Abhyas 2020Application of Integrals

Solution:

Solution
The required area is $A=\displaystyle \int _{0}^{1} x^{2} \left(x - 1\right)^{2} d x$
or $A=\displaystyle \int _{0}^{1} \left(x^{2} - x\right)^{2} d x=\displaystyle \int _{0}^{1} \left(x^{4} + x^{2} - 2 x^{3}\right)dx$
$=\left[\frac{x^{5}}{5} + \frac{x^{3}}{3} - \frac{2 x^{4}}{4}\right]_{0}^{1}$
$=\frac{1}{5}+\frac{1}{3}-\frac{2}{4}=\frac{1}{30}=k$
$\therefore 60k=2$