Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The area bounded by the curve $ y= \begin{cases} x^2,x<0 & \quad\\ x,x \geq 0 & \quad \\ \end{cases} $ and the line $y = 4$ is

KCETKCET 2010Application of Integrals

Solution:

Given, curve $y = \begin{cases} x^2, & x < 0\\ x, & x \ge 0 \end{cases}$
and line $y=4$
Area of OABO,
image
$A_{1} =\int\limits_{y=0}^{4} \sqrt{y} d y$
$=\left[\frac{2}{3} y^{3 / 2}\right]_{0}^{4}$
$t=\frac{2}{3}\left[(4)^{3 / 2}-0\right]$
$=\frac{2}{3} \times(2)^{3}$
$=\frac{16}{3}$
and area of $OBCO$,
$A_{2} =\int\limits_{0}^{4} y d y=\left[\frac{y^{2}}{2}\right]_{0}^{4}$
$=\frac{1}{2}\left[(4)^{2}-0\right]=\frac{16}{2}=8$
Hence, area of $O A B O=A_{1}+A_{2}$
$=\frac{16}{3}+8=\frac{40}{3}$ sq unit