Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The area bounded by the circle x2+y2 = 4 and the line x = y√ 3 in the first quadrant (in sq units) is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The area bounded by the circle $ x^2+y^2 = 4 $ and the line $ x = y\sqrt {3} $ in the first quadrant (in sq units) is
AMU
AMU 2016
Application of Integrals
A
$ \pi $
6%
B
$ \frac{\pi}{2} $
56%
C
$ \frac{\pi}{3} $
19%
D
None of these
19%
Solution:
We have, circle $x^2 + y^2 = 4\,\,\,...(i)$
and line, $x = y\sqrt{3}$
$\Rightarrow y = \frac{x}{\sqrt{3}}\,\,\,...(ii)$
On putting the value of $y$ from Eq, $(ii)$ to Eq. $(i)$, we get
$x^2 + (\frac{x}{\sqrt{3}})^2 = 4$
$\Rightarrow x^2 + \frac{x^2}{3} = 4$
$\Rightarrow 3x^2 + x^2 = 12$
$\Rightarrow 4x^2 = 12$
$\Rightarrow x^2 = 3$
$\Rightarrow x = \pm \sqrt{3}$
So, coordinates of $B$ are $(\sqrt{3}, 1)$. Also, circle cut the $X$-axis at $A(2,0)$ and $Y$-axis at $(0, 2)$
$[\because 2$ is radius of circle]
Required area $=$ Area of region $ODBO$
$+$ Area of region $DABD$
$=\int\limits_{0}^{\sqrt{3}} y $ (line) $dx + \int\limits_{\sqrt{3}}^{2} y$(circle) $dx$
$= \int\limits _0^{\sqrt{3}} \frac{x}{\sqrt{3}} dx + \int\limits_{\sqrt{3}}^{2} \sqrt{4 - x^2} dx$
$ = \frac{1}{\sqrt{3}} \left[\frac{x^{2}}{2}\right]_{0}^{\sqrt{3}} + \int\limits_{\sqrt{3}}^{2} \sqrt{2^{2}-x^{2}} dx $
$ = \frac{1}{\sqrt{3}}\left[\frac{\left(\sqrt{3}\right)^{2}-0}{2}\right]+\left[\frac{x}{2}\sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{x}{2}\right)\right]_{\sqrt{3}}^{2} $
$= \frac{1}{\sqrt{3}}\times\frac{3}{2} + [\frac{2}{2}\sqrt{4-4} + 2 \sin^{-1}\left(\frac{2}{2}\right) $
$-\frac{\sqrt{3}}{2}\sqrt{4-3} -2 \sin^{-1}\left(\frac{\sqrt{3}}{2}\right)] $
$= \frac{\sqrt{3}}{2}+0 + 2\sin^{-1}\left(1\right) - \frac{\sqrt{3}}{2} -2\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$
$ = 2\times\frac{\pi}{2} - 2\times\frac{\pi}{3} = \frac{\pi}{3}$