Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The area between the curve $y = 4 + 3x - x^{2}$ and x-axis is

Application of Integrals

Solution:

We have, $y = 4 + 3x - x^{2}$, a parabola
Putting $y = 0$, we get $x^{2} - 3x - 4 = 0$
$\Rightarrow \quad\left(x-4\right)\left(x+1\right)=0 \, \Rightarrow \quad x=-1$ or $x = 4$
$\therefore \quad$ Required area $= \int\limits_{-1}^{4}\left(4+3x-x^{2}\right)dx$
$=\left[4x+\frac{3x^{2}}{2}-\frac{x^{3}}{3}\right]_{-1}^{4}=\frac{125}{6}$ sq. units