Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The approximate value of $(1.0002)^{3000}$ is

ManipalManipal 2015

Solution:

Let $y=x^{3000}, x=1$ and $x+\Delta x=1.0002$
Then, $ \Delta x=1.0002-1=0.0002$
Also, $ y=1$, when $x=1$
Now, $ y=x^{3000}$
$\Rightarrow \frac{d y}{d x}=3000 x^{2999}$
$\Rightarrow \left[\frac{d y}{d x}\right]_{x=1}^{d x}=3000$
$\because \Delta y=\frac{d y}{d x} \Delta x$
$\therefore \Delta y=3000 \times 0.0002=\frac{6}{10}=0.6$
Hence, $(1.0002)^{3000}=y+\Delta y=1+0.6=1.6$