Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The angle between two vectors $ A $ and $ B $ is $ \theta $ . Vector $ R $ is the resultant of the two vectors. If $ R $ makes an angle $ \frac{\theta}{2} $ with $ A $ , then

UPSEEUPSEE 2013

Solution:

The angle $\alpha$ which the resultant $R$ makes with A is given by
$\tan \,\alpha=\frac{B \sin \theta}{A+B \cos \theta}$
or $\frac{\sin (\theta / 2)}{\cos (\theta / 2)}=\frac{2 B \sin (\theta / 2) \cos (\theta / 2)}{A+B \cos \theta}$
which gives $A+B \cos \theta=2 B \cos ^{2}\left(\frac{\theta}{2}\right)$
or $A+B\left[2 \cos ^{2}\left(\frac{\theta}{2}\right)-1\right]=2 B \cos ^{2}\left(\frac{\theta}{2}\right)$
$A=B$