If $O A C B$ be a parallelogram. Then,
$A \cup B=\alpha=$
$\angle A B O=\alpha+\theta$
In $\Delta O A B$ (by sine rule)
$\frac{O A}{\sin (\alpha+\theta)}=\frac{A B}{\sin (\alpha-\theta)}$
$\Rightarrow \frac{P+Q}{\sin (\alpha+\theta)}=\frac{P-Q}{\sin (\alpha-\theta)}$
$\Rightarrow \frac{P+Q}{P-Q}=\frac{\sin (\alpha+\theta)}{\sin (\alpha-\theta)}$
$\Rightarrow \frac{P}{Q}=\frac{\sin (\alpha+\theta)+\sin (\alpha-\theta)}{\sin (\alpha+\theta)-\sin (\alpha-\theta)}$
$\Rightarrow \frac{P}{Q}=\frac{2 \sin \alpha \cos \theta}{2 \cos \alpha \sin \theta}$
$\Rightarrow P \tan \theta=Q \tan \alpha$