Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The angle between the vectors $(2 \hat{ i }+6 \hat{ j }+3 \hat{ k })$ and $(12 \hat{ i }-4 \hat{ j }+3 \hat{ k })$ is:

Jharkhand CECEJharkhand CECE 2003

Solution:

Let $\vec{ a }=2 \hat{ i }+6 \hat{ j }+3 \hat{ k }$
and $\vec{ b }=12 \hat{ i }-4 \hat{ j }+3 \hat{ k } $
$\therefore \cos \theta=\frac{\vec{ a } \cdot \vec{ b }}{|\vec{ a }||\vec{ b }|}=\frac{(2 \hat{ i }+6 \hat{ j }+3 \hat{ k }) \cdot(12 \hat{ i }-4 \hat{ j }+3 \hat{ k })}{\sqrt{4+36+9} \sqrt{144+16+9}}$
$=\frac{24-24+9}{7 \cdot 13}=\frac{9}{91}$
$ \Rightarrow \theta=\cos ^{-1}\left(\frac{9}{91}\right)$