Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The angle between the straight line
$\frac{x-1}{2}=\frac{y+3}{-1}=\frac{z-5}{2}$ and plane $4x - 2y + 4z = 9$ is

Three Dimensional Geometry

Solution:

Direction ratio of the line are $(2, -1, 2)$ and direction ratio of normal to the plane is $(4, -2, 4)$
$cos\left(90^{\circ}-\theta\right)=\frac{\left|2\left(4\right)+\left(-1\right)\left(-2\right)+2\left(4\right)\right|}{\sqrt{2^{2}+\left(-1\right)^{2}+2^{2}}\,\sqrt{4^{2}+\left(-2\right)^{2}+4^{2}}}$
$sin\theta=\frac{8+2+8}{3 \times 6}=\frac{18}{18}$
$\Rightarrow sin\theta=1$
$\theta=90^{\circ}$.