Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The amplitude of $(1+i)^5$ is

KCETKCET 2007Complex Numbers and Quadratic Equations

Solution:

Given, $\left(1 + i\right)^{5} $
$ = \left(\sqrt{2}\right)^{5} \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)^{5} $
$ = \left(\sqrt{2}\right)^{5} \left(\cos \frac{\pi}{4} +i \sin \frac{\pi}{4}\right)^{5} $
$ = \left(\sqrt{2}\right)^{5} \left(\cos \frac{5 \pi}{4} + i \sin \frac{5\pi}{4}\right) $
[by De-Moivre’s theorem]
Now, amplitude $ = \tan^{-1} \left(\frac{y}{x}\right) $
$= \tan^{-1} \left(\frac{\sin 5\pi /4}{\cos 5 \pi /4}\right) = \frac{5\pi}{4} $