Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius $r$ is

UPSEEUPSEE 2014

Solution:

Let $R$ be the radius and $h$ be the height of cone.
$\therefore O A=h-r$
In $\Delta O A B$
$r^{2} =R^{2}+(h-r)^{2}$
$\Rightarrow r^{2} =R^{2}+h^{2}+r^{2}-2 r h$
$\Rightarrow R^{2}=2 r h-h^{2}$
The volume $V$ of the cone is given by
$V =\frac{1}{3} \pi R^{2} h$
$=\frac{1}{3} \pi h\left(2 r h-h^{2}\right) =\frac{1}{3} \pi\left(2 r h^{2}-h^{3}\right)$
On differentiating w.r.t. $h$, we get
$\frac{d V}{d h}=\frac{1}{3} \pi\left(4 r h-3 h^{2}\right)$
For maximum and minimum, put $\frac{d V}{d h}=0$
$\Rightarrow 4 r h=3 h^{2}$
$\Rightarrow 4 r=3 h$
image
$\Rightarrow h=\frac{4 r}{3}$
Now, $\frac{d^{2} V}{d h^{2}}=\frac{1}{3} \pi(4 r-6 h)$
At $h=\frac{4 r}{3},$
$\left(\frac{d^{2} V}{d h^{2}}\right)_{h=\frac{4 r}{3}} =\frac{1}{3} \pi\left(4 r-6 \times \frac{4 r}{3}\right)$
$=\frac{\pi}{3}(4 r-8 r)$
$=\frac{-4 r \pi}{3}<0$
$\Rightarrow V$ is maximum when $h=\frac{4 r}{3}.$
Hence, volume of the cone is maximum when $h=\frac{4 r}{2}$, which is the altitude of cone.