Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The acute angle between the pair of straight lines joining the origin to the points of intersection of the line $x+y-1=0$ with the pair of straight lines $k x^{2}+8 x y-3 y^{2}+2 x-4 y-1=0$ is

TS EAMCET 2020

Solution:

We have
$k x^{2}+8 x y-3 y^{2}+2 x-4 y-1=0$ is form of a straight line
$\therefore \begin{vmatrix}k & 4 & 1 \\ 4 & -3 & -2 \\ 1 & -2 & -1\end{vmatrix}=0$
$k(3-4)-4(-4+2)+1(-8+3)=0$
$-k+8-5=0 $
$\Rightarrow k=3$
$\therefore $ Acute angle between line joining the origin $\alpha$ the point of intersection $x+y=1$ and line
$3 x^{2}+8 x y-3 y^{2}+2 x-4 y-1=0$ by
Homogenous using the equation
$\therefore 3 x^{2}+8 x y-3 y^{2}+2 x(x+y)-4 y(x+y)-(x+y)^{2}=0 $
$3 x^{2}+8 x y-3 y^{2}+2 x^{2}+2 x y-4 x y-4 y^{2}-x^{2}-y^{2}-2 x y=0 $
$4 x^{2}+4 x y-8 y^{2}=0 $
$\Rightarrow x^{2}+x y-2 y^{2}=0$
$\therefore \tan \theta=\left|\frac{2 \sqrt{(1 / 2)^{2}+2}}{1-2}\right|=3 $
$\Rightarrow \cos \theta=\frac{1}{\sqrt{1+3^{2}}}$
$\cos \theta=\frac{1}{\sqrt{10}} $
$\Rightarrow \theta=\cos ^{-1}\left(\frac{1}{\sqrt{10}}\right)$