The acceleration of the body which is rolling down an inclined plane of angle $\alpha$ is
$a=\frac{g\,sin\,\alpha}{1+\frac{K^{2}}{R^{2}}}$
where $K=$ radius of gyration,
$R=$ radius of body
Now, here the body is a uniform solid disc
So, $\frac{K^{2}}{R^{2}}=\frac{1}{2}$
$\therefore a=\frac{g\,sin\,\alpha}{1+\frac{1}{2}}$
or $a=\frac{g\,sin\, \alpha}{\frac{3}{2}}$
or $a=\frac{2\,g\,sin\,\alpha}{3}$