Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Tangent to a curve intersects the y-axis at a point P. A line perpendicular to this tangent through P passes through the point 1,0. The differential equation of the curve is

NTA AbhyasNTA Abhyas 2020Differential Equations

Solution:

Equation of tangent at the point
$\mathrm{R}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ is,
$\mathrm{Y}-\mathrm{f}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{x})(\mathrm{X}-\mathrm{x})$
Coordinates of the point are $\mathrm{P}\left(0, \mathrm{f}(\mathrm{x})-\mathrm{xf}^{\prime}(\mathrm{x})\right)$
The slope of the perpendicular line through $\mathrm{P}$
is $\frac{\mathrm{f}(\mathrm{x})-\mathrm{xf}^{\prime}(\mathrm{x})}{-1}=-\frac{1}{\mathrm{f}^{\prime}(\mathrm{x})}$
$\mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}-\mathrm{x}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}=1$
is the differential equation.