Q. Tangent at a point $P$ on $\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1$ meets the $x$-axis at $A$ and $y$-axis at $B$. The locus of the midpoint of $A B$ is $\frac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}=k$, then find $k$.
Conic Sections
Solution: