Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\tan ^{-1}\left(\frac{2}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)+\tan ^{-1}\left(\frac{2}{16}\right)+\tan ^{-1}\left(\frac{2}{25}\right)+\ldots \ldots \ldots \infty$ equals

Inverse Trigonometric Functions

Solution:

$ T _1=\tan ^{-1} 3-\tan ^{-1} 1 $
$T _2=\tan ^{-1} 4-\tan ^{-1} 2 $
$T _3=\tan ^{-1} 5-\tan ^{-1} 3 $
$T _{ n -1}=\tan ^{-1}( n +1)-\tan ^{-1}( n -1) $
$T _{ n }=\tan ^{-1}( n +2)-\tan ^{-1}( n ) $
$\therefore \quad S _{\infty}=\pi-\left(\tan ^{-1}(1)+\tan ^{-1}(2)\right)=\tan ^{-1}(3)
$