Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{8}=$

Inverse Trigonometric Functions

Solution:

Given expression is equal to
$\tan ^{-1}\left(\frac{\frac{1}{3}+\frac{1}{5}}{1-\frac{1}{15}}\right)+\tan ^{-1}\left(\frac{\frac{1}{7}+\frac{1}{8}}{1-\frac{1}{56}}\right)$
$=\tan ^{-1} \frac{4}{7}+\tan ^{-1} \frac{3}{11}=\tan ^{-1}\left(\frac{\frac{4}{7}+\frac{3}{11}}{1-\frac{12}{77}}\right)=\frac{\pi}{4}$