Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Taking the set of natural numbers as the universal set, match the complement set of following sets in Column I with the sets in Column II and choose the correct option from the codes given below.
Column I Column II
A $\{x: x$ is an even natural number $\}$ 1 $\{x: x$ is not divisible by 15$\}$
B $\{x: x$ is a prime number $\}$ 2 $\{x: x$ is not a perfect square $\}$
C $\{x: x$ is a multiple of 3$\}$ 3 $\{x: x$ is an odd natural number $\}$
D $\{x: x$ is a natural number divisible by 3 and $5 \} $ 4 $\{x: x$ is not a prime number $\}$
E $\{x: x$ is a perfect square $\}$ 5 $\{x: x$ is not a multiple of 3$\}$
F $\{x: x$ is a perfect Cube$\}$ 6 $\{x: x$ is not a perfect Cube $\}$

Sets

Solution:

$U=$ Set of natural numbers
Let $A=\{x: x$ is an even natural number $\}$
$A^{\prime}=U-A$
$=\{x: x$ is an odd natural number $\}$
$B=\{x: x$ is a prime number $\}$
$B^{\prime}=U-B$
$=\{x: x$ is not a prime number $\}$
$C=\{x: x$ is a multiple of 3$\}$
$C^{\prime}=U-C$
$=\{x: x$ is not a multiple of 3$\}$
$D=\{x: x$ is a natural number divisible by 3 and 5$\}$
$=\{x: x$ is a natural number divisible by 15$\}$
$D^{\prime}=U-D$
$=\{x: x$ is a natural number not divisible by 15$\}$
$E=\{x: x$ is a perfect square $\}$
$E^{\prime}=U-E$
$=\{x: x$ is not a perfect square $\}$
$F=\{x: x$ is a perfect cube $\}$
$F^{\prime}=U-F=\{x: x$ is not a perfect cube $\}$