Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. T$\displaystyle\lim_{x \to 0+}$ $\left(x^{n} \,ln\, x\right), n > 0$

WBJEEWBJEE 2019

Solution:

$\displaystyle\lim_{x \to 0+}$$\frac{\ell nx}{\frac{1}{x^{n}}}\left(\frac{\infty}{\infty}\right).$ Applying LH rule
$\Rightarrow \, \displaystyle\lim_{x \to 0+} \frac{\frac{1}{x}}{\frac{-n}{x^{n+1}}} = 0$