Thank you for reporting, we will resolve it shortly
Q.
Suppose the sides of a triangle form a geometric progression with common ratio $r$. Then, $r$ lies in the interval
KVPYKVPY 2010
Solution:
Let the sides of triangle are
$a, ar, ar^{2}$
$[\because$ sides of triangle in $GP]$ Case I $r >\,1$
We know sum of two sides is greater than third side
$\therefore a+ar >\,ar^{2}$
$\Rightarrow r^{2}-r-1 <\,0$
$\Rightarrow r=\frac{1\pm\sqrt{5}}{2}$
$\Rightarrow 1 <\,r <\frac{\sqrt{5}+1}{2}, r >\,1$ Case II $0 <\, r <\,1$
$\therefore ar^{2}+ar >\,a$
$\Rightarrow r^{2}+r-1>\,0$
$\Rightarrow r=\frac{-1 \pm\sqrt{5}}{2}$
$\Rightarrow 1>\,r >\frac{\sqrt{5}-1}{2}, 0<\,r <\,1$
$\therefore r \in\left(\frac{\sqrt{5}-1}{2}, \frac{\sqrt{5}+1}{2}\right)$