Q. Suppose $f, f^{\prime}$ and $f^{\prime \prime}$ are continuous on $[0, e]$ and that $f^{\prime}(e)=f(e)=f(1)=1$ and $\int\limits_1^e \frac{f(x)}{x^2} d x=\frac{1}{2}$, then the value of $\int\limits_1^e f^{\prime \prime}(x) \ln x d x$ equals -
Integrals
Solution: