Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Suppose $\left(cos\right)^{2} y\cdot \frac{d y}{d x}=sin⁡\left(x + y\right)+sin⁡\left(x - y\right),\left|x\right|\leq \frac{\pi }{2}$ and $\left|y\right|\leq \frac{\pi }{2}$ . If $y\left(\frac{\pi }{3}\right)=-\frac{\pi }{2}$ , then $y\left(\frac{\pi }{2}\right)$ is

NTA AbhyasNTA Abhyas 2020Differential Equations

Solution:

$cos^{2} y\frac{d y}{d x}=2sin⁡xcos⁡y$
$\Rightarrow cos ydy=2sin ⁡ xdx$
$\Rightarrow sin y+2cos ⁡ x=c$
Now, $y\left(\frac{\pi }{3}\right)=-\frac{\pi }{2}\Rightarrow c=0$
So $sin y=-2cos ⁡ x$
At $x=\frac{\pi }{2},sin y=0\Rightarrow y\left(\frac{\pi }{2}\right)=0$