Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Suppose $a, b \in R$. If the equation $ x^2-(2 a+b) x+\left(2 a^2+b^2-b+1 / 2\right)=0 $ has two real roots, then

Complex Numbers and Quadratic Equations

Solution:

As (1) has real roots,
$ (2 a+b)^2-4\left(2 a^2+b^2-b+1 / 2\right) \geq 0$
$\Rightarrow 4 a^2+3 b^2-4 a b-4 b+2 \leq 0 $
$\Rightarrow (2 a-b)^2+2(b-1)^2 \leq 0 \Rightarrow b=1, a=\frac{1}{2}$