Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\sum\limits_{r = 1}^{\infty} cot^{-1} (r^2 + \frac{3}{4})$ equals

Inverse Trigonometric Functions

Solution:

$\sum\limits_{r = 1}^{\infty} cot^{-1} (r^2 + \frac{3}{4})$
$= \sum\limits_{r=1}^{\infty} (\frac{1}{r^2 + \frac{3}{4}})$
$ = \sum\limits_{r=1}^{\infty} tan^{-1} \left[\frac{\left(r + \frac{1}{2}\right) - \left(r - \frac{1}{2}\right)}{1 + \left(r + \frac{1}{2}\right)\left(r - \frac{1}{2}\right)}\right]$
$= (tan^{-1} \frac{3}{2} - tan^{-1} \frac{1}{2}) + (tan^{-1} \frac{5}{2} - tan^{-1} \frac{3}{2})$
$ + (tan^{-1} \frac{7}{2} - tan^{-1} \frac{5}{2}) + ...+ \frac{\pi}{2}$
$ = \frac{\pi}{2} - tan^{-1} \frac{1}{2} = cot^{-1}(1/2) = tan^{-1} 2$