Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Sum of $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+2}+. . . $to $n$ terms is

Principle of Mathematical Induction

Solution:

$S=\sum T_{n} =\sum \frac{1^{3}+2^{3}+...+n^{3}}{1+2+...+n}=\sum \frac{\sum n^{3}}{\sum n}$
$=\sum \frac{\frac{n^{2}\left(n+1\right)^{2}}{4}}{\frac{n\left(n+1\right)}{2}}=\sum\frac{ n\left(n+1\right)}{2}=\frac{1}{2}\left[\sum n^{2}+\sum n\right] $
$=\frac{1}{2} \left[\frac{n\left(n+1\right)\left(2n+1\right)}{6}+\frac{n\left(n+1\right)}{2}\right]$
$=\frac{n\left(n+1\right)}{4}\left[\frac{2n+1}{3}+1\right]=\frac{n\left(n+1\right)\left(2n+4\right)}{12}$
$=\frac{n\left(n+1\right)\left(n+2\right)}{6}$