Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Sulphide ion in alkaline solution reacts with solid sulphur to form polysulphide ions having formula , $S _{2}^{2-}, S _{3}^{2-}, S _{4}^{2-}$, etc. if $K _{1}=12$ for $S + S ^{2} \rightleftharpoons S _{2}^{2-}$ and $K _{2}=132$ for $2 S + S ^{2} \rightleftharpoons S _{3}^{2-}$, calculate $K _{3}$ for $S + S _{2}^{2-} \rightleftharpoons S _{3}^{2-}$ Give your answer by dividing $5.5$

Equilibrium

Solution:

$S + S ^{2} \rightleftharpoons S _{2}^{2-} K _{1}=12\,\,\, ...(1)$
$2 S + S ^{2-} \rightleftharpoons S _{3}^{2-} K _{2}=132\,\,\,...(2)$
$S + S _{2}^{2-} \rightleftharpoons S _{3}^{2-} K _{3}=?$
$K _{1}=\frac{\left( S _{2}{ }^{2-}\right)}{( S ) \times\left( S ^{2-}\right)}$
equation $( II \div I )$
$=\frac{ K _{2}}{ K _{1}}=\frac{\left( S _{3}{ }^{2-}\right)}{( S )^{2} \times\left( S ^{2-}\right)} \times \frac{( S )\left( S ^{2-}\right)}{\left( S _{2}{ }^{2-}\right)}$
$K _{3}=\frac{\left( S _{3}{ }^{2-}\right)}{( S ) \times\left( S _{2}^{2-}\right)}=\frac{ K _{2}}{ K _{1}}=\frac{\left( S _{3}{ }^{2-}\right)}{( S ) \times\left( S _{2}^{2-}\right)}$
$K _{3}=\frac{\left( S _{3}{ }^{2-}\right)}{( S ) \times\left( S _{2}{ }^{2-}\right)}=\frac{132}{12}$
$=11$