Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Students I, II and III perform an experiment for measuring the acceleration due to gravity (g) using a simple pendulum. They use different lengths of the pendulum and/or record time for different number of oscillations. The observations are shown in the table.
Least count for length = $0.1\, cm$, Least count for time = $0.1\, s$
Student Length of the pendulum (cm) Number of oscillations (n) Total time for(n) oscillations (s) Time period (s)
I 64.0 8 128.0 16.0
II 64.0 4 64.0 16.0
III 20.0 4 36.0 9.0

If $E_1,E_{II} \, and \, E_{III} $ are the percentage errors in g, i.e. $ (\frac {\Delta g}{g}\times 100 )$ for students I, II and III, respectively

IIT JEEIIT JEE 2008Physical World, Units and Measurements

Solution:

$T=2 \pi \sqrt {\frac {1}{g}} $
or $\frac {t}{n}= 2 \pi \sqrt {\frac {1}{g}} $
$\therefore g=\frac {(4 \pi^2)(n^2)l}{t^2} $
$\%$ error in $g=\frac {\Delta g}{g} \times 100=(\frac {\Delta l}{l}+ \frac {2 \Delta t}{t}) \times 100 $
$E_I=( \frac {0.1}{64}+ \frac {2 \times 0.1}{128}) \times 100=0.3125 \%$
$E_{II}=( \frac {0.1}{64}+ \frac {2 \times 0.1}{64}) \times 100=0.46875 \%$
$E_{III}=( \frac {0.1}{20}+ \frac {2 \times 0.1}{36}) \times 100=1.055 \%$
Hence $E_I $ is minimum.