Q.
Statement I The function
$f(x)=\begin{cases}2 x, & \text { if } x<0 \\ 0, & \text { if } 0 \leq x \leq 1 \\ 4 x, & \text { if } x>1\end{cases}$ is continuous everywhere except at $x=1$.
Statement II The function
$f(x)= \begin{cases}-2, & \text { if } x \leq-1 \\ 2 x, & \text { if }-1 < x \leq 1 \\ 2, & \text { if } x>1\end{cases}$ is continuous for every value of $x$.
Continuity and Differentiability
Solution: