Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Statement I The amplitude of $\sin \frac{\pi}{5}+i\left(1-\cos \frac{\pi}{5}\right)$ is $\frac{\pi}{10}$.
Statement II If complex number lies on the first quadrant, then $\arg (z)=\theta$.

Complex Numbers and Quadratic Equations

Solution:

Here, $r \cos \theta=\sin \left(\frac{\pi}{5}\right)$ and $r \sin \theta=1-\cos \frac{\pi}{5}$
$\Rightarrow r \cos \theta=2 \sin \frac{\pi}{10} \cos \frac{\pi}{10}$ and $r \sin \theta=2 \sin ^2 \frac{\pi}{10}$
$\Rightarrow \tan \theta=\tan \left(\frac{\pi}{10}\right) \Rightarrow \theta=\frac{\pi}{10}$
Statements I and II are true.