Q.
Statement I Let $z_1$ and $z_2$ be two complex numbers such that $\overline{z_1}+i \overline{z_2}=0$ and $\arg \left(z_1 \cdot z_2\right)=\pi$, then $\arg \left(z_1\right)$ is $\frac{3 \pi}{4}$.
Statement II $\arg \left(z_1 \cdot z_2\right)=\arg z_1+\arg z_2$.
Complex Numbers and Quadratic Equations
Solution: