Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Statement-1 :The function $f( x )=\int\limits_0^{ x } \sqrt{1+ t ^2} dt$ is an odd function and $g ( x )= f ^{\prime}( x )$ is an even function
Statement-2: For a differentiable function $f (x)$ if $f ' (x)$ is an even function then f (x) is an odd function

Integrals

Solution:

image
$\text { for S-1: } f(x)=\int\limits_0^x \sqrt{1+t^2} d t ; g(x)=\sqrt{1+x^2} $
$f(-x)=\int\limits_0^{-x} \sqrt{1+t^2} d t ; t=-y $
$f(-x)=-\int\limits_0^x \sqrt{1+y^2} d y $
$\therefore f ( x )+ f (- x )=0 \Rightarrow f \text { is odd and } g \text { is obviously even. }$