Q.
Statement-1: Minimum value of function $f(\theta)=\sin ^4 \theta+\frac{\sec \theta}{8 \tan \theta}$ is $\frac{5}{16}$ for $\frac{\pi}{2}<\theta<\pi$.
Let $a _{ i }>0 \quad \forall i \in N$, then $\frac{ a _1+ a _2+ a _3+\ldots \ldots . .+ a _{ n }}{ n } \geq \sqrt[n]{ a _1 a _2 a _3 \ldots \ldots a _{ n }}$
Statement-2: where equality is obtained at $a _1= a _2= a _3 \ldots \ldots \ldots= a _{ n }$.
Sequences and Series
Solution: