Q.
Statement-1: Let the mapping $w = z +\frac{ c }{ z }$ where $z = x + iy , w = u + iv$ and $c$ is a real number $(\neq 0, \pm 1)$ maps the circle $|z|=1$ in the $z$ plane into a conic in the $w$ plane. The conic is a hyperbola.
Statement-2: The equation $a x^2+2 h x y+b y^2+2 g x+2 f y+c=0$ represents a hyperbola provided that $a b c+2 f g h-a f^2-b g^2-c h^2 \neq 0$ and $h^2-a b>0$.
Conic Sections
Solution: